FIAMA

USER'S MANUAL AND MAINTENANCE

ELECTRONIC HOLLOW SHAFT DISPLAY

WITH SERIAL OUTPUT AND MANUAL SIZE CHANGEOVER "EP-RS-MAN

Manual purpose

This manual has been designed by the Manufacturer to provide the necessary information regarding the instrument EP-RS-MAN to those who are authorized to carry out safely its installation, maintenance, dismantling and disposal. All the necessary information for the buyers and planners can be found in the Sales catalogue. Other than adopting good technical construction methods, the information should be read carefully and strictly applied. Inobservance of this information could cause risks for the health and safety of people and economical damage. This information, provided by the Manufacturer in the original language(Italian) is also available in other languages to satisfy legislative and/or commercial needs. This manual must be kept in good conditions by a responsible person in an ideal place so that it is always available for consultation. In case this manual is lost or deteriorates, a replacement should be requested directly from the manufacturer quoting the manual's code. This manual reflects the state of skill of the instrument at the time of input on the market: however the manufacturer reserves the right to make changes, add or improve the manual without giving any reason to hold the present manual inadequate.

Identification of the equipment

The identification plate represented is applied on the instrument.
To find out the identification code of the instrument, consult the sales catalogue.

Environmental conditions

Temperature setting: min. $0^{\circ} \mathrm{C}$, max. $+50^{\circ} \mathrm{C}$.
It is forbidden to use the instrument other than its specific use and in potentially explosive conditions or where anti- explosive elements are used.

Storage

Here below are some references to be followed for the storage of the instrument.
Avoid environments with excessive humidity and those exposed to bad weather (avoid open areas). Avoid putting the instrument directly on the ground. Store the instrument in its original packing.

Conformity declaration and EC marking

The instrument answers to the following Communitarian Directives:
2014/30/EU Electromagnetic compatibility, 2011/65/EU RoHS.

Maintenance

The instrument does not needs a particular maintenance except cleaning to do only with a soft cloth dampen with ethylic alcohol or water. Do not use hydrocarbon solvents (petrol, diluants, etc.): the using of these products could affect the proper functioning of the instrument.
Reparations should be done only and exclusively at the FIAMA technical assistance centre.

Calibrations and tests

It is advisable to calibrate the instrument periodically, once every working year.
To do the calibration, follow the calibration procedure indicated in the present manual.

Assistance request procedure

For any kind of technical assistance request, contact the sales department of the Manufacturer directly indicating the information given on the identification plate, the number of hours used and the type of defect.

Manufacturer's responsibility

The manufacturer declines any responsibility in case of :

- Using the instrument contrary to the national safety and accident-prevention laws.
- Wrong installation, inobservance or wrong procedures of the instructions provided in the present manual.
- Defective electrical power supply.
- Modifications or tampering.
- Operations carried out by untrained or unqualified staff.

The safety of the instrument also depends on the strict observance of the procedures indicated in the manual: always operate the instrument in its functioning capacity and carry out a careful routine maintenance.

- All phases of inspection and maintenance should be done by qualified staff.
- The configurations provided in the manual are the only ones permitted.
- Do not try to use it anyway contrary to the indications provided.
- The instructions in this manual do not substitute but accomplish the obligations of the current legislation regarding the safety laws.

Installation

Before installing the instrument, read the following warnings:
a) Connect the instrument strictly following the instructions of the manual.
b) It is the responsibility of the user to check, before using, the correct settings of the parameters of the instrument to avoid damage to persons or things.
c) The instrument CANNOT function in a dangerous environment (inflammable or explosive).
d) The unit has sensible parts to electrostatic charge, therefore the handling of the inner electronic cards has to be carried out with appropriate care to avoid permanent damages.

Description

The electronic position indicator EP-RS-M, includes in the same case a position transducer and a display unit setting up a device for measuring linear or angular shifting, compact, easy assembling, applicable in several type of industry (packaging, woodworking, aluminium, sheet metal, etc.)
This device simplifies and speed the size changeover on machines with manual handlings of axes (for ex. with handwheels). Mounting an EP-RS-M on each axis, besides visualizing the current quota, is possible to recall the quota to be reached and move the axis to the correct position. This quota is sent to the supervisor (PLC or computer) through serial port with protocol MODBUS-RTU, and during size changeover can be consult pressing a key of EP-RS-M. Before switching-on, the supervisor reads the axis quota of each EP-RS-M to verify that the corresponding axis is in its correct position. Therefore the verifying of correct positioning of all machine axes is made by supervisor, which controls, testing all EP-RS-M that each axis is in the correct position.
The display has 6 digits besides a sign (range from -999999 +999999), with 10 mm -high-digits allow a very good readability also by distances.
With the 3 frontal keys is possible to programme the value on the display for every turn of the hollow shaft and start the following functions: reset/preset of quota, absolute/relative quota, conversion mm/inches, and reading range in degrees.
There are also available 3 distinct origins for the correction of quota by using different tools and the offset function for balancing of tool wear. On the display all activated functions are showed by a symbol.
The power supply is $10-25 V D C$, and a back-up battery inside the instrument assures the maintenance and updating of quota even without external power supply for about 6 months (the quota is displayed, the keys answer to the programming and the set functions, etc.).
When there is power supply the battery is recharged.
When there isn't power supply the serial port comunication is not operating and the instrument doesn't answers to the master.

Mechanical assembling

Fit the display EP-RS trough the hollow shaft on the drive shaft, taking care that the lock pin goes into the Ø6 bore.
For this purpose get ready the bore for the lock pin (bore 6,1 depth 6 mm) with wheelbase 40 mm (or 30 mm) of the drive shaft, see picture 1 and 2. Then fit the instrument in and block it with 2 screws M5 placed on the hollow shaft, see picture 1 and 2 . Alternatively the blocking can be carried out with 2 screws using the two threaded bores $\mathrm{M} 4 \times 10$ on the back of the instrument.

Programming

To step into the parameter programming press key $\mathbf{\Delta}$ and on the display appears $\operatorname{PA5} 5$, now press 2 times key RESET and appear 4 zeroes, the first on the right is blinking, with keys $\boldsymbol{\Delta}$ (digit increase) and (digit selection), set out password $\mathbf{0 2 7 3}$ and confirm with RESET. In case of wrong set-out of password it goes out of the programming. The parameters that have to be set can be run with key $\boldsymbol{\Delta}$ and in order of appearance they are:

- ISLIFL ndEL	value to be displayed for every turn of the shaft, number of decimal digits,
$\square \operatorname{lr}[\mathrm{Bn}$	count direction,
MEA5E1	keys opening mode
GFFSEL	displacement of origin,
SELIJP	not used.
Addr	address device
6RUヵ-r	Baud rate serial port comunication

To enter into the modification of the selected parameter press two times RESET (one time displays only the value) and with keys $\boldsymbol{\Delta}$ and the wanted value to be confirmed with RESET.
To go out of the programming press
Value to be displayed for every turn of the hollow shaft uIFLIFL
This parameter together with the following one allows to programme the value which has to be displayed for every turn of the hollow shaft. The range allowed is from 0,00001 to 999999 with setting of decimal point position that is, after programming of the last digit on the left, pressing key will blink the decimal pinpoint and with key $\mathbf{\text { it can }}$ can be moved to the wanted position. Confirm with RESET.

Number of decimal digits ndE[
It is the number of decimal digits to visualize on the display, range allowed from 0 to 5 .
Example 1: each turn of the hollow shaft will have a displacement on the machine of 50 , set
ו- 1
Example 2: each turn of the hollow shaft will have a displacement of 12,345 and on display has to appear 12,3 . The constant has to be set at 12,3450 and constant at 1 .

Count direction $d \operatorname{lr}[$ [n

Set out the count direction of the display, range allowed 0 or 1 .
Setting 0 the value on the display increases, turning the hollow shaft clockwise.
Setting 1 the value on the display decreases, turning the hollow shaft clockwise.

Keys functions mode ITE A5E I

This parameter programmes the functions linked to the keys.
The value to set is a number of three digits so each key corresponds to a digit; the digit on the right stands for setting of key RESET, the digit in the middle stands for key $\boldsymbol{\Delta}$ while the last digit on the left stand for key . The values allowed are the following:

VALUE	KEY	KEY \mathbf{A}	KEY RESET
0	none	none	none
1	Function ABS/REL	Conversion mm/inch	Reset
2	Movement FORWARD	Display in degrees	Preset
3	none	Display Target Quota	Fast Preset
4	none	none	Change of origin 0,1,2
5	none	none	Movement BACKWORD

NB: To use EP-RS with function of remote reading of keys and consult the target quota, set $\operatorname{IILAEL} \quad \mathbf{I}=\mathbf{2 3 5}$ The target quota is display until key $\boldsymbol{\Delta}$ is pressed; keeping pressed key $\boldsymbol{\Delta}$ for more than 5 second, enter into modify (previous entering of password) inner instruments parameter.

Reset: function of reset of quota, pressing on key RESET the quota is zero-set .
Preset: function of preset of quota, pressing on key RESET the quota on the display became the same of the one set in parameter Preset. The setting of Preset value appears immediately after parameter MLELELI(if chose value 2).
Fast Preset: the fast setting of the quota on the display, pressing on key RESET appears Preset and pressing still 2 times RESET is possible to set the value directly (use keys Δ and confirm with RESET). This function is useful when the quote on the display has often be corrected.

Origin change (quota correction for tool change): with this function 3 different origins $(0,1,2)$ are programmable and passes from an origin to the other wit key RESET. Activating the function of origin change on the display appear two small arrows and the indication of the selected origin happens with the switching on of the origin indicators (see paragraph meaning of symbols). After setting 4 in the first digit on the right of
ME REL I, will appear PrS0 and pressing 2 times RESET has to be set the value to be read in this position of shaft for origin 0, confirm with RESET. It will appear PrS1 which is the value to be read for origin 1 in the present position of shaft: set the correct value and confirm with RESET. It will appears PrS2 which is the value to be read for origin 2 in the present position of shaft: set the correct value and confirm with RESET. It means PrS0, PrS1, PrS2 are references for the calibration, in a certain position of the shaft, in three different origins.
Function ABS/REL: Enables the pass from absolute to relative value, pressing key zero-set temporary the value to allow a relative shifting. On the display switches on indicator REL to indicate that the current quote is relative to the zero-point just created. Pressing still key $<$ reappears the absolute value and on the display switches on the indicator ABS.
Conversion mm/inch: Pressing key converts the measure from millimetre to inches and back with indication of inch $/ \mathrm{mm}$ on the display and a decimal number more then for millimetres. By choosing 5 decimals for millimetres the conversion in inches is not allowed.
Visualization in degrees: Pressing on key on the display appears Deg to indicate the visualization of measure in degrees.

Target Quota Display: pressing key $\mathbf{\Delta}$ is visualized the last quota sent by master.

Origin displacement aFFGEL

This parameter is added or subtracted from the current quota to correct the value showed on the display, for example following wear or changing of tool. Setting a positive value on display appears the current quota added to this value.
Set zero to exclude the offset function (manufacturer's value).
The offset is not available if the function of tool-change is selected.

Address device Flddr.

This is the identification address of the unit, it must be unique for every device connected to the bus network, admitted value from 1 to 247.

Baud rate serial port comunication 1 ARLIA-r

VALUE	Baud rate
0	4800
1	9600
2	19200
3	38400

Adjusting of quota

After the assembling of instrument on the machine and setting of all parameters, to visualize on the display the correct measure it is necessary to carry out the reset or preset of quota. Position the shaft in a point in which is known exactly the correct measure that has to be visualized (ex. stroke checking) or measure the value in that point of axis. Programme parameter HL HSL \mid with value 3 in the first digit on the right and go out of the programming. Now press RESET and it will appear Preset, press again 2 times RESET and set on the display the correct measure to visualize, confirm with RESET and on the display appears the correct measure.

If the adjusting quota is worth to zero instead of the preset is possible use reset, setting value 1 on the first digit on the right of MEASL \mid, this way pressing RESET the value on the display will be zeroed.
Now that the instrument is adjusted its necessary re-establish to the wanted value parameter $\boldsymbol{7 L} \boldsymbol{H E} \boldsymbol{I}$ | to avoid accidental reset/preset of quota.

Protocol of serial port connection

The device has a serial output connection RS485 with MODBUS RTU protocol to dialogue with remote units. When there isn't power supply the serial port is not operating and the instrument doesn't answers to the master.
Below is a list of the registers of the instrument with the relative addresses and number of bytes. It is possible to read and write on these registers, using the query reading/writing ModBus compatible.

Parameter	Address ModBus (16 bit register)	Type (n° bytes)	Read Write
Quota on display	0×00	Signed Long (4)	R
ndE[(position of decimal point)	0x02	Unsigned Char (1)	RW
U I5LIFL (correction factor)	0×03	Unsigned Long (4)	RW
U15urit (number of decimal digit set in)	0x05	Unisgned Char (1)	RW
Preset quota	0×06	Signed Long (4)	RW
Preset quota Preset1 (origin 1)	0x08	Signed Long (4)	RW
Preset quota Preset2 (origin 2)	$0 \times 0 \mathrm{~A}$	Signed Long (4)	RW
Preset quota Preset3 (origin 3)	0x0C	Signed Long (4)	RW
DFF5EE value	0x0E	Signed Long (4)	RW
HEAGE I value	0×10	Unsigned Char (1)	RW
d lr [0n count direction	0×11	Unsigned Char (1)	RW
Command register (see below)	0×12	Unsigned Char (1)	W
Status register (see below)	0×13	Unsigned Char (1)	R
Target quota	0x14	Signed Long (4)	RW

The register "Target dimension" is the quota showed by signs and absolute value, which appears on display pressing key $\boldsymbol{\Delta}$.

Command register: writing a suitable control in this register is it possible to force the reset/preset, absolute/relative quota, origin change, etc. as in the following schedule (in order of increasing priority in case of more height bit at the same time):

0×01	\rightarrow	Reset quota
0×02	\rightarrow	Preset quota
0×04	\rightarrow	Toggle absolute/relative ABS/REL dimension
0×08	\rightarrow	Axe origin change
0×10	\rightarrow	Current position stored as Preset for origin1
0×20	\rightarrow	Current position stored as Preset for origin2
0×40	\rightarrow	Current position stored as Preset for origin3
0×80	\rightarrow	Conversion mm/inch

Status register: the reading of this register allows knowing the display mode of the device.

S_B7	S_B6	S_B5	S_B4	S_B3	S_B2	S_B1	S_B0
S_TST2	S_TST1	S_TST0	S_MI_4	S_MI_3	S_IA_2	S_IA_1	S_IA_0

S_IA_2 ... S_IA_0 status bits for absolute/relative dimension for use with and without origin according below table:

CURRENT STATE DISPLAY	S_IA_2	S_IA_1	S_IA_0
Absolute Quota (ABS)	0	0	0
Relative Quota (REL)	0	0	1
Origin0 ABS	0	1	0
Origin0 REL	0	1	1
Origin1 ABS	1	0	0
Origin1 REL	1	0	1
Origin2 ABS	1	1	0
Origin2 REL	1	1	1

S_MI_3, S_MI_4 bits for mm/inch conversion: S_MI_3=1 for display mm, S_MI_4=1 for display in inch.

Keys Status	S_TST2	S_TST1	S_TST0
No key pressed	0	0	0
Key RESET pressed	0	0	1
Key arrow UP pressed	0	1	0
Key arrow SX pressed	1	0	0

NB: only if $7 \mathbb{Z}$ RSL \mathbf{I}, worth 235 , the state register contains bit S_TST2, S_TST1, S_TST0 updated to correct value. During programming the constants of these bit are forced on 0 .
Pressing more keys at the same time the bit are updated therefore, allowing to learn all possible combination of pressed keys.

MODBUS protocol

The system (slave) transmits by an instrument MASTER on the serial line through a protocol type MODBUS RTU (words of 8 bit; 1 stop bit; 0 parity bit). the physical interface is RS-485. Every EP-_RS has an identifying address. The protocol is based on a QUERY/RESPONSE structure: the slave devices reply to the queries with a message that contains the identifying address and the requested data.

The MODBUS protocol ensures the validity of the exchanged data through the line by a "Cyclic Redundance Check" error check; two CRC bytes of are added to the messages. The algorithm to make two bytes of CRC in Pascal language and C is provided.

PASCAL language CRC routine	C language CRC Routine
Function CRC16(messaggio:string; var Hi: byte; var Lo: byte):Word; const auchCRCHi: array[0..255] of byte $=($ \$00, \$C1, \$81, \$40, \$01, \$C0, \$80, \$41, \$01, \$C0, \$80, \$41, \$00, \$C1, \$81, \$40, \$01, \$C0, \$80, \$41, \$00, \$C1, \$81, \$40, \$00, \$C1, \$81, \$40, \$01, \$C0, \$80, \$41, \$01, \$C0, \$80, \$41, \$00, \$C1, \$81, \$40, \$00, \$C1, \$81, \$40, \$01, \$C0, \$80, \$41, \$00, \$C1, \$81, \$40, \$01, \$C0, \$80, \$41, \$01, \$C0, \$80, \$41, \$00, \$C1, \$81, \$40, \$01, \$C0, \$80, \$41, \$00, \$C1, \$81, \$40, \$00, \$C1, \$81, \$40, \$01, \$C0, \$80, \$41, \$00, \$C1, \$81, \$40, \$01, \$C0, \$80, \$41, \$01, \$C0, \$80, \$41, \$00, \$C1, \$81, \$40, \$00, \$C1, \$81, \$40, \$01, \$C0, \$80, \$41, \$01, \$C0, \$80, \$41, \$00, \$C1, \$81, \$40, \$01, \$C0, \$80, \$41, \$00, \$C1, \$81, \$40, \$00, \$C1, \$81, \$40, \$01, \$C0, \$80, \$41, \$01, \$C0, \$80, \$41, \$00, \$C1, \$81, \$40, \$00, \$C1, \$81, \$40, \$01, \$C0, \$80, \$41, \$00, \$C1, \$81, \$40, \$01, \$C0, \$80, \$41, \$01, \$C0, \$80, \$41, \$00, \$C1, \$81, \$40, \$00, \$C1, \$81, \$40, \$01, \$C0, \$80, \$41, \$01, \$C0, \$80, \$41, \$00, \$C1, \$81, \$40, \$01, \$C0, \$80, \$41, \$00, \$C1, \$81, \$40, \$00, \$C1, \$81, \$40, \$01, \$C0, \$80, \$41, \$00, \$C1, \$81, \$40, \$01, \$C0, \$80, \$41, \$01, \$C0, \$80, \$41, \$00, \$C1, \$81, \$40, \$01, \$C0, \$80, \$41, \$00, \$C1, \$81, \$40, \$00, \$C1, \$81, \$40, \$01, \$C0, \$80, \$41, \$01, \$C0, \$80, \$41, \$00, \$C1, \$81, \$40, \$00, \$C1, \$81, \$40, \$01, \$C0, \$80, \$41, \$00, \$C1, \$81, \$40, \$01, \$C0, \$80, \$41, \$01, \$C0, \$80, \$41, \$00, \$C1, \$81, \$40) ;	static unsigned char auchCRCHi[] = \{ $0 \times 00,0 \times C 1,0 \times 81,0 \times 40,0 \times 01,0 \times C 0,0 \times 80,0 \times 41,0 \times 01,0 \times C 0$, $0 \times 80,0 \times 41,0 \times 00,0 \times C 1,0 \times 81,0 \times 40,0 \times 01,0 \times C 0,0 \times 80,0 \times 41$, $0 \times 00,0 \times C 1,0 \times 81,0 \times 40,0 \times 00,0 \times C 1,0 \times 81,0 \times 40,0 \times 01,0 \times C 0$, $0 \times 80,0 \times 41,0 \times 01,0 x C 0,0 \times 80,0 \times 41,0 \times 00,0 x C 1,0 \times 81,0 \times 40$, $0 \times 00,0 \times C 1,0 \times 81,0 \times 40,0 \times 01,0 \times C 0,0 \times 80,0 \times 41,0 \times 00,0 \times C 1$, $0 \times 81,0 \times 40,0 \times 01,0 \times C 0,0 \times 80,0 \times 41,0 \times 01,0 \times C 0,0 \times 80,0 \times 41$, $0 \times 00,0 \times C 1,0 \times 81,0 \times 40,0 \times 01,0 \times C 0,0 \times 80,0 \times 41,0 \times 00,0 \times C 1$, $0 \times 81,0 \times 40,0 \times 00,0 \times C 1,0 \times 81,0 \times 40,0 \times 01,0 \times C 0,0 \times 80,0 \times 41$, $0 \times 00,0 \times C 1,0 \times 81,0 \times 40,0 \times 01,0 \times C 0,0 \times 80,0 \times 41,0 \times 01,0 \times C 0$, $0 \times 80,0 \times 41,0 x 00,0 x C 1,0 x 81,0 \times 40,0 x 00,0 x C 1,0 x 81,0 \times 40$, $0 \times 01,0 \times C 0,0 \times 80,0 \times 41,0 \times 01,0 \times C 0,0 \times 80,0 \times 41,0 \times 00,0 \times C 1$, $0 \times 81,0 \times 40,0 \times 01,0 \times C 0,0 \times 80,0 \times 41,0 \times 00,0 \times C 1,0 \times 81,0 \times 40$, $0 \times 00,0 \times C 1,0 \times 81,0 \times 40,0 \times 01,0 \times C 0,0 \times 80,0 \times 41,0 \times 01,0 \times C 0$, $0 \times 80,0 \times 41,0 \times 00,0 \times C 1,0 \times 81,0 \times 40,0 \times 00,0 \times C 1,0 \times 81,0 \times 40$, $0 \times 01,0 x C 0,0 \times 80,0 \times 41,0 x 00,0 x C 1,0 \times 81,0 \times 40,0 \times 01,0 x C 0$, $0 \times 80,0 \times 41,0 \times 01,0 \times C 0,0 \times 80,0 \times 41,0 \times 00,0 \times C 1,0 \times 81,0 \times 40$, $0 \times 00,0 x C 1,0 x 81,0 \times 40,0 x 01,0 x C 0,0 x 80,0 \times 41,0 x 01,0 x C 0$, $0 \times 80,0 \times 41,0 \times 00,0 \times C 1,0 \times 81,0 \times 40,0 \times 01,0 \times C 0,0 \times 80,0 \times 41$, $0 \times 00,0 \times C 1,0 \times 81,0 \times 40,0 \times 00,0 \times C 1,0 \times 81,0 \times 40,0 \times 01,0 \times C 0$, $0 \times 80,0 \times 41,0 \times 00,0 \times C 1,0 \times 81,0 \times 40,0 \times 01,0 \times C 0,0 \times 80,0 \times 41$, $0 \times 01,0 \times C 0,0 \times 80,0 \times 41,0 \times 00,0 \times C 1,0 \times 81,0 \times 40,0 \times 01,0 \times C 0$, $0 \times 80,0 \times 41,0 \times 00,0 \times C 1,0 \times 81,0 \times 40,0 \times 00,0 \times C 1,0 \times 81,0 \times 40$, $0 \times 01,0 \times C 0,0 \times 80,0 \times 41,0 \times 01,0 \times C 0,0 \times 80,0 \times 41,0 \times 00,0 \times C 1$, $0 \times 81,0 \times 40,0 \times 00,0 \times C 1,0 \times 81,0 \times 40,0 \times 01,0 \times C 0,0 \times 80,0 \times 41$, $0 \times 00,0 \times C 1,0 \times 81,0 \times 40,0 \times 01,0 \times C 0,0 \times 80,0 \times 41,0 \times 01,0 \times C 0$, $0 \times 80,0 \times 41,0 \times 00,0 \times C 1,0 \times 81,0 \times 40$ \};
const auchCRCLo: array [0..255] of byte $=($ \$00, \$C0, \$C1, \$01, \$C3, \$03, \$02, \$C2, \$C6, \$06, \$07, \$C7, \$05, \$C5, \$C4, \$04, \$CC, \$0C, \$0D, \$CD, \$0F, \$CF, \$CE, \$0E, \$0A, \$CA, \$CB, \$0B, \$C9, \$09, \$08, \$C8, \$D8, \$18, \$19, \$D9, \$1B, \$DB, \$DA, \$1A, \$1E, \$DE, \$DF, \$1F, \$DD, \$1D, \$1C, \$DC, \$14, \$D4, \$D5, \$15, \$D7, \$17, \$16, \$D6, \$D2, \$12, \$13, \$D3, \$11, \$D1, \$D0, \$10, \$F0, \$30, \$31, \$F1, \$33, \$F3, \$F2, \$32, \$36, \$F6, \$F7, \$37, \$F5, \$35, \$34, \$F4, \$3C, \$FC, \$FD, \$3D, \$FF, \$3F, \$3E, \$FE, \$FA, \$3A, \$3B, \$FB, \$39, \$F9, \$F8, \$38, \$28, \$E8, \$E9, \$29, \$EB, \$2B, \$2A, \$EA, \$EE, \$2E, \$2F, \$EF, \$2D, \$ED, \$EC, \$2C, \$E4, \$24, \$25, \$E5, \$27, \$E7, \$E6, \$26, \$22, \$E2, \$E3, \$23, \$E1, \$21, \$20, \$E0, \$A0, \$60, \$61, \$A1, \$63, \$A3, \$A2, \$62, \$66, \$A6, \$A7, \$67, \$A5, \$65, \$64, \$A4, \$6C, \$AC, \$AD, \$6D, \$AF, \$6F, \$6E, \$AE, \$AA, \$6A, \$6B, \$AB, \$69, \$A9, \$A8, \$68, \$78, \$B8, \$B9, \$79, \$BB, \$7B, \$7A, \$BA, \$BE, \$7E, \$7F, \$BF, \$7D, \$BD, \$BC, \$7C, \$B4, \$74, \$75, \$B5, \$77, \$B7, \$B6, \$76, \$72, \$B2, \$B3, \$73, \$B1, \$71, \$70, \$B0, \$50, \$90, \$91, \$51, \$93, \$53, \$52, \$92, \$96, \$56, \$57, \$97, \$55, \$95, \$94, \$54, \$9C, \$5C, \$5D, \$9D, \$5F, \$9F, \$9E, \$5E, \$5A, \$9A, \$9B, \$5B, \$99, \$59, \$58, \$98, \$88, \$48, \$49, \$89, \$4B, \$8B, \$8A, \$4A, \$4E, \$8E, \$8F, \$4F, \$8D, \$4D, \$4C, \$8C, \$44, \$84, \$85, \$45, \$87, \$47, \$46, \$86, \$82, \$42, \$43, \$83, \$41, \$81, \$80, \$40) ;	static char auchCRCLo[] = \{ $0 \times 00,0 x C 0,0 x C 1,0 x 01,0 x C 3,0 x 03,0 \times 02,0 x C 2,0 x C 6,0 x 06$, $0 \times 07,0 \times C 7,0 \times 05,0 \times C 5,0 \times C 4,0 \times 04,0 \times C C, 0 x 0 C, 0 \times 0 D, 0 x C D$, $0 \times 0 F, 0 x C F, 0 x C E, 0 x 0 E, 0 x 0 A, 0 x C A, 0 x C B, ~ 0 x 0 B, 0 x C 9,0 x 09$, $0 \times 08,0 \times C 8,0 x D 8,0 \times 18,0 \times 19,0 x D 9,0 \times 1 B, 0 x D B, 0 x D A, 0 \times 1 \mathrm{~A}$, $0 \times 1 \mathrm{E}, 0 \times \mathrm{DE}, 0 \times \mathrm{DF}, 0 \times 1 \mathrm{~F}, 0 \times \mathrm{DD}, 0 \times 1 \mathrm{D}, 0 \times 1 \mathrm{C}, 0 \times \mathrm{DC}, 0 \times 14,0 \times \mathrm{D} 4$, $0 x D 5,0 \times 15,0 x D 7,0 x 17,0 x 16,0 x D 6,0 x D 2,0 x 12,0 x 13,0 x D 3$, $0 \times 11,0 \times D 1,0 x D 0,0 \times 10,0 \times F 0,0 \times 30,0 \times 31,0 \times F 1,0 \times 33,0 \times F 3$, $0 \times F 2,0 \times 32,0 \times 36,0 x F 6,0 \times F 7,0 \times 37,0 \times F 5,0 \times 35,0 \times 34,0 \times F 4$, $0 \times 3 \mathrm{C}, 0 \times \mathrm{FC}, 0 \times \mathrm{FD}, 0 \times 3 \mathrm{D}, 0 \times \mathrm{FF}, 0 \times 3 \mathrm{~F}, 0 \times 3 \mathrm{E}, 0 \times \mathrm{FE}, 0 \times F \mathrm{~A}, 0 \times 3 \mathrm{~A}$, $0 \times 3 B, 0 \times F B, 0 \times 39,0 \times F 9,0 x F 8,0 \times 38,0 \times 28,0 x E 8,0 \times E 9,0 \times 29$, $0 \times E B, 0 \times 2 B, 0 \times 2 \mathrm{~A}, 0 \times \mathrm{EA}, 0 \times E E, 0 \times 2 \mathrm{E}, 0 \times 2 \mathrm{~F}, 0 \times \mathrm{EF}, 0 \times 2 \mathrm{D}, 0 \times \mathrm{ED}$, $0 \times E C, 0 \times 2 \mathrm{C}, 0 \times E 4,0 \times 24,0 \times 25,0 \times E 5,0 \times 27,0 \times E 7,0 \times E 6,0 \times 26$, $0 \times 22,0 \times E 2,0 \times E 3,0 \times 23,0 \times E 1,0 \times 21,0 \times 20,0 \times E 0,0 \times A 0,0 \times 60$, $0 x 61,0 x A 1,0 x 63,0 x A 3,0 x A 2,0 x 62,0 x 66,0 x A 6,0 x A 7,0 x 67$, $0 \times A 5,0 \times 65,0 \times 64,0 \times A 4,0 \times 6 \mathrm{C}, 0 \times \mathrm{AC}, 0 \times A \mathrm{D}, 0 \times 6 \mathrm{D}, 0 \times \mathrm{AF}, 0 \times 6 \mathrm{~F}$, 0x6E, 0xAE, 0xAA, 0x6A, 0x6B, 0xAB, 0x69, 0xA9, 0xA8, 0x68, $0 x 78,0 x B 8,0 x B 9,0 x 79,0 x B B, 0 x 7 B, 0 x 7 A, 0 x B A, 0 x B E, 0 x 7 E$, $0 \times 7 \mathrm{~F}, 0 \times B F, 0 \times 7 \mathrm{D}, 0 \times B D, 0 \times B C, 0 \times 7 \mathrm{C}, 0 \times B 4,0 \times 74,0 \times 75,0 \times B 5$, $0 x 77,0 x B 7,0 x B 6,0 x 76,0 \times 72,0 x B 2,0 x B 3,0 \times 73,0 x B 1,0 x 71$, $0 \times 70,0 \times B 0,0 \times 50,0 \times 90,0 \times 91,0 \times 51,0 \times 93,0 \times 53,0 \times 52,0 \times 92$, $0 \times 96,0 \times 56,0 \times 57,0 \times 97,0 \times 55,0 \times 95,0 \times 94,0 \times 54,0 \times 9 \mathrm{C}, 0 \times 5 \mathrm{C}$, $0 \times 5 \mathrm{D}, 0 \times 9 \mathrm{D}, 0 \times 5 \mathrm{~F}, 0 \times 9 \mathrm{~F}, 0 \times 9 \mathrm{E}, 0 \times 5 \mathrm{E}, 0 \times 5 \mathrm{~A}, 0 \times 9 \mathrm{~A}, 0 \times 9 \mathrm{~B}, 0 \times 5 \mathrm{~B}$, $0 \times 99,0 \times 59,0 \times 58,0 \times 98,0 \times 88,0 \times 48,0 \times 49,0 \times 89,0 \times 4 \mathrm{~B}, 0 \times 8 \mathrm{~B}$, $0 \times 8 \mathrm{~A}, 0 \times 4 \mathrm{~A}, 0 \times 4 \mathrm{E}, 0 \times 8 \mathrm{E}, 0 \times 8 \mathrm{~F}, 0 \times 4 \mathrm{~F}, 0 \times 8 \mathrm{D}, 0 \times 4 \mathrm{D}, 0 \times 4 \mathrm{C}, 0 \times 8 \mathrm{C}$, $0 \times 44,0 \times 84,0 \times 85,0 \times 45,0 \times 87,0 \times 47,0 \times 46,0 \times 86,0 \times 82,0 \times 42$, $0 \times 43,0 \times 83,0 \times 41,0 \times 81,0 \times 80,0 \times 40$ \};
```var i, index: integer; begin Hi := $FF ; Lo := $FF ; for i:=1 to length(messaggio) do begin index := Hi xor ORD(messaggio[i]); Hi := Lo xor auchCRCHi[index]; Lo := auchCRCLo[index]; end;```	```unsigned short CRC16(unsigned short usDataLen) { uchCRCHi = 0xFF ; uchCRCLo = 0xFF ; while (usDataLen--) { ulndex = uchCRCHi ^*puchMsg++ ; uchCRCHi = uchCRCLo ^ auchCRCHi[ulndex] ; uchCRCLo = auchCRCLo[uIndex]; } return (uchCRCHi << 8\|uchCRCLo);```

Further Information on the making of the two CRC bytes are available on the site www.modicon.com.

The activated MODBUS commands are:
$0 \times 03$ : multiple reading of registers
$0 \times 10$ : writing of several registers.

## 0x03 READING OF REGISTERS

To read the registers of the instrument, the master must send a query composed as follows (every element is a byte):

```
ADDRESS | 0x03 | START_REG_HI| START_REG_LO | N_REG_HI| N_REG_LO | CRC_HI|CRC_LO
```

- START_REG_HI | START_REG_LO is the address at the starting 16 bit for the reading
- N_REG_HI|N_REG_LO is the number (16 bit) of the registers to be read

The instrument replies with the following message:
ADDRESS | 0x03 | NBYTE | DATA_1_HI| DATA_1_LO |DATA_2_HI|DATA_2_LO | ... | CRC_HI |CRC_LO

DATA_1_HI|DATA_1_LO |DATA_2_HI|DATA_2_LO | ... is the sequence of the data read..
NBYTE is the number of the given bytes that follow
DATA_1_HI|DATA_1_LO |DATA_2_HI|DATA_2_LO | ... is the stream of data read.

## 0x10 WRITING OF REGISTERS

To write the registers of the instrument, the master must send a query composed as follows (every element is a byte):
ADDRESS | 0x10 | START_REG_HI | START_REG_LO | N_REG_HI | N_REG_LO |NBYTE | DATA_1_HI| DATA_1_LO |DATA_2_HI|DATA_2_LO |...... | CRC_HI | CRC_LO

The instrument replies with the following message:
ADDRESS | 0x10|START_REG_HI|START_REG_LO|N_REG_HI|N_REG_LO|CRC_HI|CRC_LO

## Connection scheme


$1+10 \div 25$ VDC positive power supply
2 GND negative power supply
3 RS+ positive RS485 serial port
4 RS- negative RS485 serial port

Male connector 4 pin M12x1.
Plese pay attention: a wrong electrical connection could damage the unit.

## Meaning of the symbols on the display



1. Indicator of flat battery: begins to blink when the level of loading goes under a certain value and when it keeps switched on its necessary to change the batteries within 1 month.
2. Indicator of absolute quota
3. Indicator of relative quota
4. Indicator of mm
5. Indicator of inches
6. Indicator of degrees
7. Indicator of positive Offset: indicates that the measure is corrected by a positive offset
8. Indicator of negative Offset: indicates that the measure is corrected by a negative offset
9. Indicator of values changing: it blinks during the programming phase
10. Indicator of origins: indicates that the origin changing mode is opened
11. Indicator for origin 1
12. Indicator for origin 2

## Erros messages

ouErFL the current quota passed the maximum value that can be visualized (from -999999 to 999999);
Error I: its necessary to adjust again the quota;
not APE: inner failure, contact the technical assistance.

Overall dimensions


## Technical features

Power supply	$12-30 \mathrm{Vdc}, \mathrm{max} 100 \mathrm{~mA}$
Hollow shaft diameter	EP20: $20 \mathrm{~mm} \mathrm{H7}$
	EP25: $25 \mathrm{~mm} \mathrm{H7}$
Max. rotation speed	1000 RPM
Resolution	4000 impulses/revolution
Range	$-999999 ; 999999$
Display	LCD high readability with 10mm-high-digits
Keyboard	3 digits for programming and functions activation
Available functions	reset/preset, absolute/incremental quota, conversion   mm/inches, visualization in degrees, 3 distinct origins for tool   changing, tool wear adjustment
Serial port output	RS485 MODBUS RTU protocol
Serial port connection	2 connector 4 pin male M12x1
Weight	370 g
Protection degree	IP54
Working temperature	$0-50^{\circ} \mathrm{C}$
Relative humidity	$35-85 \%$
Electromagnetic compatibility	$2014 / 30 / \mathrm{EU}$
RoHS	$2011 / 65 / \mathrm{EU}$

## Manufacturer

All communications to the manufacturer should be addressed to:
FIAMA s.r.I., Via G. Di Vittorio, 5/A - 43016 San Pancrazio (Parma) - Italy
Tel. (+39) 0521.672.341-Fax. (+39) 0521.672.537 - e-mail: info@fiama.it - www.fiama.it
FIAMA srl is not responsible for any damage to persons or things caused by tampering and wrong use and in any case that are not consistent with the features of the instrument.

